This paper proposes an integrated system for the processing and analysis of highly degraded printed documents for the purpose of recognizing text characters. As a case study, ancient printed texts are considered. The system is comprised of various blocks operating sequentially. Starting with a single page of the document, the background noise is reduced by wavelet-based decomposition and filtering, the text lines are detected, extracted, and segmented by a simple and fast adaptive thresholding into blobs corresponding to characters, and the various blobs are analyzed by a feedforward multilayer neural network trained with a back-propagation algorithm. For each character, the probability associated with the recognition is then used as a discriminating parameter that determines the automatic activation of a feedback process, leading the system back to a block for refining segmentation. This block acts only on the small portions of the text where the recognition cannot be relied on and makes use of blind deconvolution and MRF-based segmentation techniques whose high complexity is greatly reduced when applied to a few subimages of small size. The experimental results highlight that the proposed system performs a very precise segmentation of the characters and then a highly effective recognition of even strongly degraded texts.

Analysis and recognition of highly degraded printed characters

Tonazzini A;
2004

Abstract

This paper proposes an integrated system for the processing and analysis of highly degraded printed documents for the purpose of recognizing text characters. As a case study, ancient printed texts are considered. The system is comprised of various blocks operating sequentially. Starting with a single page of the document, the background noise is reduced by wavelet-based decomposition and filtering, the text lines are detected, extracted, and segmented by a simple and fast adaptive thresholding into blobs corresponding to characters, and the various blobs are analyzed by a feedforward multilayer neural network trained with a back-propagation algorithm. For each character, the probability associated with the recognition is then used as a discriminating parameter that determines the automatic activation of a feedback process, leading the system back to a block for refining segmentation. This block acts only on the small portions of the text where the recognition cannot be relied on and makes use of blind deconvolution and MRF-based segmentation techniques whose high complexity is greatly reduced when applied to a few subimages of small size. The experimental results highlight that the proposed system performs a very precise segmentation of the characters and then a highly effective recognition of even strongly degraded texts.
2004
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Degraded texts
image restoration
Wavelet denoising
Neural Networks
File in questo prodotto:
File Dimensione Formato  
prod_68266-doc_22665.pdf

non disponibili

Descrizione: articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Dimensione 518.93 kB
Formato Adobe PDF
518.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/79586
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact