A neural network architecture is presented for monitoring events coded in image time sequences. The image sequence defines the sampling of high frequency phenomena where only morphological aspects of the scene are taken into account. In particular a model for implementing a hierarchical neural network architecture is proposed. Preliminary results are shown in the study of the oscillation states in the flame front of the power plant gas combustors.

A multilevel neural approach to dynamic scene analysis

Salvetti O
2003

Abstract

A neural network architecture is presented for monitoring events coded in image time sequences. The image sequence defines the sampling of high frequency phenomena where only morphological aspects of the scene are taken into account. In particular a model for implementing a hierarchical neural network architecture is proposed. Preliminary results are shown in the study of the oscillation states in the flame front of the power plant gas combustors.
2003
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
scene analysis
File in questo prodotto:
File Dimensione Formato  
prod_68276-doc_123098.pdf

solo utenti autorizzati

Descrizione: A multilevel neural approach to dynamic scene analysis
Tipologia: Versione Editoriale (PDF)
Dimensione 94.69 kB
Formato Adobe PDF
94.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/79595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact