Paper reports recent advances in optical nanomaterials, planar microcavity, and spherical microresonators. Bottom-up fabrication and optical assessment of Er3+-activated SiO2-HfO2 waveguide glass ceramic is presented. Concerning confined structures, fabrication by radio-frequency sputtering (RFS) technique of an Er3+-activated microcavity with a quality factor of 171 using oxide-based dielectric materials is demonstrated and fabrication and spectroscopic assessment of Er 3+-activated silica microspheres is presented.
Tailoring Er3+ Spectroscopic Properties by Nanocomposite Photonic Glasses and Confined Structures
A Chiappini;A Chiasera;M Ferrari;G Nunzi Conti;S Pelli;
2007
Abstract
Paper reports recent advances in optical nanomaterials, planar microcavity, and spherical microresonators. Bottom-up fabrication and optical assessment of Er3+-activated SiO2-HfO2 waveguide glass ceramic is presented. Concerning confined structures, fabrication by radio-frequency sputtering (RFS) technique of an Er3+-activated microcavity with a quality factor of 171 using oxide-based dielectric materials is demonstrated and fabrication and spectroscopic assessment of Er 3+-activated silica microspheres is presented.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.