The complete mitochondrial control region was sequenced for 60 individuals representing different populations for each of the four species of the subterranean mole rat Spalax ehrenbergi superspecies in Israel: Spalax galili (2n = 52), S. golani (2n = 54), S. carmeli (2n = 58), and S. judaei (2n = 60). The control region of all species and populations is very similar both in length (979 to 983 bp) and in base composition. As in agreement with previous surveys on mitochondrial control regions on mammals, the mole rat control region can be divided into a central domain and two flanking domains, ETAS (extended termination associated sequences) and CSB (conserved sequence blocks). Along with the common conserved blocks found in these domains (ETAS1, ETAS2, CSB1, CSB2, and CSB3), we have also detected in all individuals an ETAS1-like and a CSB1-like element, both in the ETAS domain. The most conserved region was the central domain, followed by the CSB and ETAS domains, showing important differences in the four species analyzed. Phylogenetic analysis supported the existence of two clades. One clade contained individuals belonging to Spalax galili (2n = 52) and S. golani (2n = 54), separated in two different branches depending on the species. The other clade contained individuals belonging to S. carmeli (2n = 58) and S. judaei (2n = 60) mixed together, suggesting a more recent event of speciation. Within species we have observed a southward trend of increasing variability. These results have been explained as a consequence of the adaptation of the species to ecological factors such as aridity and temperature stresses.
DNA sequence variation in the mitochondrial control region of subterranean mole rats, Spalax ehrenbergi superspecies, in Israel.
2003
Abstract
The complete mitochondrial control region was sequenced for 60 individuals representing different populations for each of the four species of the subterranean mole rat Spalax ehrenbergi superspecies in Israel: Spalax galili (2n = 52), S. golani (2n = 54), S. carmeli (2n = 58), and S. judaei (2n = 60). The control region of all species and populations is very similar both in length (979 to 983 bp) and in base composition. As in agreement with previous surveys on mitochondrial control regions on mammals, the mole rat control region can be divided into a central domain and two flanking domains, ETAS (extended termination associated sequences) and CSB (conserved sequence blocks). Along with the common conserved blocks found in these domains (ETAS1, ETAS2, CSB1, CSB2, and CSB3), we have also detected in all individuals an ETAS1-like and a CSB1-like element, both in the ETAS domain. The most conserved region was the central domain, followed by the CSB and ETAS domains, showing important differences in the four species analyzed. Phylogenetic analysis supported the existence of two clades. One clade contained individuals belonging to Spalax galili (2n = 52) and S. golani (2n = 54), separated in two different branches depending on the species. The other clade contained individuals belonging to S. carmeli (2n = 58) and S. judaei (2n = 60) mixed together, suggesting a more recent event of speciation. Within species we have observed a southward trend of increasing variability. These results have been explained as a consequence of the adaptation of the species to ecological factors such as aridity and temperature stresses.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.