The paper addresses the relationship between the chemico-physical properties and the residual combustion reactivity of fly ashes from a full-scale front fired PF coal boiler. Ashes collected at different rows of electrostatic precipitators (EP) have been characterized for their particle size distribution, morphology, chemical composition and combustion reactivity. The combustion time of carbon in ash has been estimated for a wide range of temperatures using a thermobalance and a heated strip reactor. Results showed the existence of marked differences in the content of both carbon and inorganic elements according to the row of EP and the granulometric size of the samples. In contrast with this, the combustion reactivity of all ash samples was similar regardless of their collection point and particle size. Ash reactivity resulted to be approximately 100 times lower than that of the parent coal. The role of thermal annealing on the low reactivity of fly ashes and their propensity to undergo additional thermodeactivation upon further heat treatment has also been investigated. To this end coal and fly ashes have been heated under inert conditions up to 2000 °C and then characterised for their residual combustion reactivity. These tests showed that heat treatment does reduce the reactivity of coal but does not reduce any further the already low reactivity of fly ashes.

Burning and physico-chemical characteristics of carbon in ash from a coal fired power plant

O Senneca
2008

Abstract

The paper addresses the relationship between the chemico-physical properties and the residual combustion reactivity of fly ashes from a full-scale front fired PF coal boiler. Ashes collected at different rows of electrostatic precipitators (EP) have been characterized for their particle size distribution, morphology, chemical composition and combustion reactivity. The combustion time of carbon in ash has been estimated for a wide range of temperatures using a thermobalance and a heated strip reactor. Results showed the existence of marked differences in the content of both carbon and inorganic elements according to the row of EP and the granulometric size of the samples. In contrast with this, the combustion reactivity of all ash samples was similar regardless of their collection point and particle size. Ash reactivity resulted to be approximately 100 times lower than that of the parent coal. The role of thermal annealing on the low reactivity of fly ashes and their propensity to undergo additional thermodeactivation upon further heat treatment has also been investigated. To this end coal and fly ashes have been heated under inert conditions up to 2000 °C and then characterised for their residual combustion reactivity. These tests showed that heat treatment does reduce the reactivity of coal but does not reduce any further the already low reactivity of fly ashes.
2008
Istituto di Ricerche sulla Combustione - IRC - Sede Napoli
Carbon in ash
Thermal annealing
Coal combustion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact