We present a new isogeometric method for the discretization of the Reissner-Mindlin plate bending problem. The proposed scheme follows a recent theoretical framework that makes possible the construction of a space of smooth discrete deflections Wry and a space of smooth discrete rotations Theta(h) such that the Kirchhoff constraint is exactly satisfied at the limit. Therefore we obtain a formulation which is natural from the theoretical/mechanical viewpoint and locking-free by construction. We prove that the method is uniformly stable and satisfies optimal convergence estimates. Finally, the theoretical results are fully supported by numerical tests.
An isogeometric method for the Reissner-Mindlin plate bending problem
L Beirao da Veiga;A Buffa;C Lovadina;M Martinelli;G Sangalli
2012
Abstract
We present a new isogeometric method for the discretization of the Reissner-Mindlin plate bending problem. The proposed scheme follows a recent theoretical framework that makes possible the construction of a space of smooth discrete deflections Wry and a space of smooth discrete rotations Theta(h) such that the Kirchhoff constraint is exactly satisfied at the limit. Therefore we obtain a formulation which is natural from the theoretical/mechanical viewpoint and locking-free by construction. We prove that the method is uniformly stable and satisfies optimal convergence estimates. Finally, the theoretical results are fully supported by numerical tests.File | Dimensione | Formato | |
---|---|---|---|
prod_233410-doc_92457.pdf
solo utenti autorizzati
Descrizione: An isogeometric method for the Reissner-Mindlin plate bending problem
Dimensione
527.52 kB
Formato
Adobe PDF
|
527.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.