Every microarray experiment is affected by many possible sources of variability that may even corrupt biological evidence on analyzed sequences. We applied a "Taguchi method" strategy, based on the use of orthogonal arrays to optimize the deposition step of oligonucleotide sequences on glass slides. We chose three critical deposition parameters (humidity, surface, and buffer) at two levels each, in order to establish optimum settings. A L-8 orthogonal array was used in order to monitor both the main effects and interactions on the deposition of a 25 mer oligonucleotide hybridized to its fluorescent-labeled complementary. Signal-background ratio and deposition homogeneity in terms of mean intensity and spot diameter were considered as significant outputs. An analysis of variance (ANOVA) was applied to raw data and to mean results for each slide and experimental run. Finally we calculated an overall evaluation coefficient to group together important outputs in one number. Environmental humidity and surface-buffer interaction were recognized as the most critical factors, for which a 50% humidity, associated to a chitosan-covered slide and a sodium phosphate + 25% dimethyl sulfoxide (DMSO) buffer gave best performances. Our results also suggested that Taguchi methods can be efficiently applied in optimization of microarray procedures.

Application of the Taguchi method to the analysis of the deposition step in microarray production.

Severgnini M;Consolandi C;Rizzi E;De Bellis G;
2006

Abstract

Every microarray experiment is affected by many possible sources of variability that may even corrupt biological evidence on analyzed sequences. We applied a "Taguchi method" strategy, based on the use of orthogonal arrays to optimize the deposition step of oligonucleotide sequences on glass slides. We chose three critical deposition parameters (humidity, surface, and buffer) at two levels each, in order to establish optimum settings. A L-8 orthogonal array was used in order to monitor both the main effects and interactions on the deposition of a 25 mer oligonucleotide hybridized to its fluorescent-labeled complementary. Signal-background ratio and deposition homogeneity in terms of mean intensity and spot diameter were considered as significant outputs. An analysis of variance (ANOVA) was applied to raw data and to mean results for each slide and experimental run. Finally we calculated an overall evaluation coefficient to group together important outputs in one number. Environmental humidity and surface-buffer interaction were recognized as the most critical factors, for which a 50% humidity, associated to a chitosan-covered slide and a sodium phosphate + 25% dimethyl sulfoxide (DMSO) buffer gave best performances. Our results also suggested that Taguchi methods can be efficiently applied in optimization of microarray procedures.
2006
Istituto di Tecnologie Biomediche - ITB
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/81311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact