The new translation method for Slater-type orbitals (STOs) previously tested in the case of the overlap integral is extended to the calculation of two-center two-electron molecular integrals. The method is based on the exact translation of the regular solid harmonic part of the orbital followed by the series expansion of the residual spherical part in powers of the radial variable. Fair uniform convergence and stability under wide changes in molecular parameters are obtained for all studied two-center hybrid, Coulomb, and exchange repulsion integrals. Ten-digit accuracy in the final numerical results is achieved through multiple precision arithmetic calculation of common angular coefficients and Gaussian numerical integration of some of the analytical formulas resulting for the radial integrals.
New translation method for STO's and its application to Calculation of two-centre two-electron integrals
Rapallo A
2000
Abstract
The new translation method for Slater-type orbitals (STOs) previously tested in the case of the overlap integral is extended to the calculation of two-center two-electron molecular integrals. The method is based on the exact translation of the regular solid harmonic part of the orbital followed by the series expansion of the residual spherical part in powers of the radial variable. Fair uniform convergence and stability under wide changes in molecular parameters are obtained for all studied two-center hybrid, Coulomb, and exchange repulsion integrals. Ten-digit accuracy in the final numerical results is achieved through multiple precision arithmetic calculation of common angular coefficients and Gaussian numerical integration of some of the analytical formulas resulting for the radial integrals.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.