Monitoring and managing small coastal ecosystems requires a considerable understanding of the temporal dynamics of biophysical factors describing the coastal water systems. For this reason, daily observation from space could be a very efficient tool. The objective of the work described in this paper is to evaluate the contribution of remote sensing to the continuous monitoring of coastal areas. It is well known that in coastal areas, the presence of inorganic suspended sediments and coloured dissolved organic matter can make chlorophyll-concentration measurements from remote sensing difficult. To overcome these difficulties, an alternative approach to the SeaWiFS standard chlorophyll algorithm is presented, based on a semi-analytic model for sea water and on the use of MODIS data as input in a model for atmospheric effects removal. Moreover, land contamination (mixed sea-land pixels) can introduce ambiguities in sea-surface temperature measurements from remote sensing. This paper proposes the use of a hydrodynamic model as a time-space interpolator of in situ campaign data, to extensively validate the temperature values extracted from AVHRR sensor. We validated the proposed approach, using experimental field data collected over a two-year campaign in the Taranto Gulf. The results seem to indicate a good agreement between remote-sensed and in situ data.

Comparison between remote-sensed data and in situ measurements in coastal waters: The Taranto sea case.

G ALABISO
2004

Abstract

Monitoring and managing small coastal ecosystems requires a considerable understanding of the temporal dynamics of biophysical factors describing the coastal water systems. For this reason, daily observation from space could be a very efficient tool. The objective of the work described in this paper is to evaluate the contribution of remote sensing to the continuous monitoring of coastal areas. It is well known that in coastal areas, the presence of inorganic suspended sediments and coloured dissolved organic matter can make chlorophyll-concentration measurements from remote sensing difficult. To overcome these difficulties, an alternative approach to the SeaWiFS standard chlorophyll algorithm is presented, based on a semi-analytic model for sea water and on the use of MODIS data as input in a model for atmospheric effects removal. Moreover, land contamination (mixed sea-land pixels) can introduce ambiguities in sea-surface temperature measurements from remote sensing. This paper proposes the use of a hydrodynamic model as a time-space interpolator of in situ campaign data, to extensively validate the temperature values extracted from AVHRR sensor. We validated the proposed approach, using experimental field data collected over a two-year campaign in the Taranto Gulf. The results seem to indicate a good agreement between remote-sensed and in situ data.
2004
Istituto per l'Ambiente Marino Costiero - IAMC - Sede Napoli
Environmental monitoring
Environmental monitoring
Chlorophyll
Finite elements model
Coastal waters
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/82348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact