Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CNR Institutional Research Information System
We report a complete characterization of InAsxP1-x/InP (0.05<x<0.,59) superlattices epitaxially grown by low pressure metalorganic chemical vapor deposition and by chemical beam epitaxy, Samples were obtained by both conventional growth procedures and by periodically exposing the just-grown InP surface to an AsH3 flux. Using the latter procedure, very thin InAsxP1-x/InP layers (10-20 Angstrom) are obtained by P<->As substitutions effects, Arsenic composition of the so obtained layers depends both on AsH3 flux intensity and exposure times, Samples have been characterized by means of high resolution x-ray diffraction, high resolution transmission electron microscopy, 3 IC photoluminescence, and extended x ray absorption fine structure spectroscopy, The combined use of high resolution x-ray diffraction and of 4 K photoluminescence, with related simulations, allows us to predict both InAsP composition and width, which are qualitatively confirmed by electron microscopy. Our study indicates that the effect of the formation of thin InAsP layers is due to the as incorporation onto the InP surface exposed to the As flux during the AsH3 exposure, rather than the residual As pressure in the growth chamber during InP growth, Arsenic K-edge extended x-ray absorption fine structure analysis shows that the first shell environment of As at these interfaces is similar to that found in bulk InAsxP1-x, alloys of similar composition, In particular we measure an almost constant As-in bond length (within 0.02 Angstrom), independent of As concentration; this confirms that epitaxy with InP is accompanied by local structural distortions, such as bond angle variations, which accommodate the nearly constant As-In bond length. In our investigation we characterize not only very high quality heterostructures but also samples showing serious inter-face problems such as nonplanarity and/or a consistent chemical spread along the growth axis, In the study presented here we thus propose a general method, based on several independent techniques, for the characterization of the interface quality of semiconductor superlattices,
Structural and optical investigation of InAsxP1-x/InP strained superlattices
We report a complete characterization of InAsxP1-x/InP (0.05As substitutions effects, Arsenic composition of the so obtained layers depends both on AsH3 flux intensity and exposure times, Samples have been characterized by means of high resolution x-ray diffraction, high resolution transmission electron microscopy, 3 IC photoluminescence, and extended x ray absorption fine structure spectroscopy, The combined use of high resolution x-ray diffraction and of 4 K photoluminescence, with related simulations, allows us to predict both InAsP composition and width, which are qualitatively confirmed by electron microscopy. Our study indicates that the effect of the formation of thin InAsP layers is due to the as incorporation onto the InP surface exposed to the As flux during the AsH3 exposure, rather than the residual As pressure in the growth chamber during InP growth, Arsenic K-edge extended x-ray absorption fine structure analysis shows that the first shell environment of As at these interfaces is similar to that found in bulk InAsxP1-x, alloys of similar composition, In particular we measure an almost constant As-in bond length (within 0.02 Angstrom), independent of As concentration; this confirms that epitaxy with InP is accompanied by local structural distortions, such as bond angle variations, which accommodate the nearly constant As-In bond length. In our investigation we characterize not only very high quality heterostructures but also samples showing serious inter-face problems such as nonplanarity and/or a consistent chemical spread along the growth axis, In the study presented here we thus propose a general method, based on several independent techniques, for the characterization of the interface quality of semiconductor superlattices,
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/8285
Citazioni
ND
ND
40
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall'Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l'Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.