The results of a systematic investigation by transmission electron microscopy (TEM), cathodoluminescence (CL), Rutherford backscattering (RBS), X-ray diffraction and topography and scanning force microscopy (SFM) techniques on several InGaAs/InP compressive and tensile strained layers covering the misfit range from -2.3 to 1.5x10(-2) and grown by the metal organic vapor phase epitaxy (MOVPE) technique are reported. In compressively strained films the same dependence for the residual strain vs the film thickness as for the InGaAs/GaAs is found whereas a different strain release rate and different extended defects are found in tensile stressed InGaAs alloy. In particular in tensile stressed samples, grooves, planar defects and cracks are present in addition to the interfacial network of misfit dislocations. The correlation between the observed planar defects and the mechanisms of strain relaxation in the case of tensile strained layers is discussed.

A systematic investigation of strain relaxation, surface morphology and defects in tensile and compressive InGaAs/InP layers

C Ferrari;L Lazzarini;G Salviati;M Natali;
2000

Abstract

The results of a systematic investigation by transmission electron microscopy (TEM), cathodoluminescence (CL), Rutherford backscattering (RBS), X-ray diffraction and topography and scanning force microscopy (SFM) techniques on several InGaAs/InP compressive and tensile strained layers covering the misfit range from -2.3 to 1.5x10(-2) and grown by the metal organic vapor phase epitaxy (MOVPE) technique are reported. In compressively strained films the same dependence for the residual strain vs the film thickness as for the InGaAs/GaAs is found whereas a different strain release rate and different extended defects are found in tensile stressed InGaAs alloy. In particular in tensile stressed samples, grooves, planar defects and cracks are present in addition to the interfacial network of misfit dislocations. The correlation between the observed planar defects and the mechanisms of strain relaxation in the case of tensile strained layers is discussed.
2000
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
1-55899-486-6
DISLOCATIONS
GROWTH
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/8312
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact