A new, nonparametric, approach to Bayesian robustness is presented. Whereas many studies in Bayesian robustness have dealt with a parametric sampling distribution, considering classes of prior distributions on the parameters, here we assume that the sampling distribution comes from a Dirichlet process with a parameter = , with > 0 and being a probability measure, specied with uncertainty.

Nonparametric Bayesian robustness

F Ruggeri
2010

Abstract

A new, nonparametric, approach to Bayesian robustness is presented. Whereas many studies in Bayesian robustness have dealt with a parametric sampling distribution, considering classes of prior distributions on the parameters, here we assume that the sampling distribution comes from a Dirichlet process with a parameter = , with > 0 and being a probability measure, specied with uncertainty.
2010
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Bayesian robustness
Concentration function
Dirichlet process.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/83527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact