Silica-based sol-gel glasses activated by Er3+ ions are attractive materials for integrated optics (IO) devices such as frequency upconverters and optical amplifiers. Monolithic erbium-activated silica xerogels with erbium content ranging from 0 up to 40 000 ppm were prepared by the sol-gel technique. Samples were densified by thermal treatment in air at 950 °C for 120 h. The densification degree and the relative content of hydroxyl groups were studied by Raman spectroscopy. Refractive indices were measured at 632.8 and 543.5 nm by a prism coupling technique. Green to blue and violet upconversion luminescence upon continuous-wave excitation at 514.5 nm was observed for all samples. Emission at 1.5 ?m, characteristic of the 4I13/2->4I15/2 transition of Er3+ ions, was observed at room temperature for all samples upon continuous-wave excitation at 980 nm. For the 5000 Er/Si ppm-doped xerogel, a photoluminescence was observed and a lifetime of 8 ms for the metastable 4I13/2 level was measured.

Erbium-activated silica xerogels: spectroscopic and optical properties

Ca;Ma;Ra;Pelli;Righini;Ferrari;
2001

Abstract

Silica-based sol-gel glasses activated by Er3+ ions are attractive materials for integrated optics (IO) devices such as frequency upconverters and optical amplifiers. Monolithic erbium-activated silica xerogels with erbium content ranging from 0 up to 40 000 ppm were prepared by the sol-gel technique. Samples were densified by thermal treatment in air at 950 °C for 120 h. The densification degree and the relative content of hydroxyl groups were studied by Raman spectroscopy. Refractive indices were measured at 632.8 and 543.5 nm by a prism coupling technique. Green to blue and violet upconversion luminescence upon continuous-wave excitation at 514.5 nm was observed for all samples. Emission at 1.5 ?m, characteristic of the 4I13/2->4I15/2 transition of Er3+ ions, was observed at room temperature for all samples upon continuous-wave excitation at 980 nm. For the 5000 Er/Si ppm-doped xerogel, a photoluminescence was observed and a lifetime of 8 ms for the metastable 4I13/2 level was measured.
2001
Istituto di fotonica e nanotecnologie - IFN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/8409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? ND
social impact