A quasistatic evolution problem for a phase transition model with nonconvex energy density is considered in terms of Young measures. We focus on the particular case of a finite number of phases. The new feature consists in the use of suitable regularity arguments in order to prove an existence result for a generalized notion of evolution. © 2011 WILEY-VCH Verlag GmbH & Co.

Quasistatic evolution for a phase-transition model: A young measure approach

A Fiaschi
2011

Abstract

A quasistatic evolution problem for a phase transition model with nonconvex energy density is considered in terms of Young measures. We focus on the particular case of a finite number of phases. The new feature consists in the use of suitable regularity arguments in order to prove an existence result for a generalized notion of evolution. © 2011 WILEY-VCH Verlag GmbH & Co.
2011
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Elastic materials
Incremental problems
Phase transitions
Quasistatic evolution
Rate-independent processes
Young measures
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/84201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact