The article is focused on analyzing the effect of functionalization and reactive processing on the morphological, thermal, rheological and mechanical properties of composites of isotactic polypropylene (PP), polystyrene (PS), poly(ethylene-vinyl acetate) (EVA), with cellulose fibers, hemp or oat as natural fillers. Both polymers and fibers were modified with bi-functional monomers (glycidyl methacrylate, GMA; maleic anhydride, MA) capable of facilitating chemical reactions between the components during melt mixing. Polyolefin copolymers containing reactive groups (PP-g-GMA, SEBS-g-MA, PS-co-MA, etc.) were used as compatibilizers. Optical and SEM microscopy, FTIR, RX, DSC, TGA, DMTA, rheological and mechanical tests were employed for the composites characterization. The properties of binary and ternary systems have been analyzed as a function of both fiber and compatibilizer content. All compatibilized systems showed enhanced fiber dispersion and interfacial adhesion. The phase behavior and the thermal stability of the composites were affected by the chemical modification of the fibers. Marked changes in the overall crystallization processes and crystal morphology of PP composites were observed owing to the nucleating effect of the fibers. The tensile mechanical behavior of the compatibilized composites generally resulted in a higher stiffness, depending on the fiber amount and the structure and concentration of compatibilizer.

Functionalization, Compatibilization and Properties of Polyolefin Composites with Natural Fibers

Mariano Pracella;
2010

Abstract

The article is focused on analyzing the effect of functionalization and reactive processing on the morphological, thermal, rheological and mechanical properties of composites of isotactic polypropylene (PP), polystyrene (PS), poly(ethylene-vinyl acetate) (EVA), with cellulose fibers, hemp or oat as natural fillers. Both polymers and fibers were modified with bi-functional monomers (glycidyl methacrylate, GMA; maleic anhydride, MA) capable of facilitating chemical reactions between the components during melt mixing. Polyolefin copolymers containing reactive groups (PP-g-GMA, SEBS-g-MA, PS-co-MA, etc.) were used as compatibilizers. Optical and SEM microscopy, FTIR, RX, DSC, TGA, DMTA, rheological and mechanical tests were employed for the composites characterization. The properties of binary and ternary systems have been analyzed as a function of both fiber and compatibilizer content. All compatibilized systems showed enhanced fiber dispersion and interfacial adhesion. The phase behavior and the thermal stability of the composites were affected by the chemical modification of the fibers. Marked changes in the overall crystallization processes and crystal morphology of PP composites were observed owing to the nucleating effect of the fibers. The tensile mechanical behavior of the compatibilized composites generally resulted in a higher stiffness, depending on the fiber amount and the structure and concentration of compatibilizer.
2010
MATERIALI COMPOSITI E BIOMEDICI
Compositi
Polimeri
Fibre naturali
Funzionalizzazione
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/84294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact