Nucleotide excision repair (NER) is the most flexible of all known DNA-repair mechanisms, and XPG is a 3'-endonuclease that participates in NER. Mutations in this gene (ERCC5) may result in the human syndrome xeroderma pigmentosum (XP) and, in some cases, in the complex phenotype of Cockayne syndrome (CS). Two Brazilian XP siblings, who were mildly affected, were investigated and classified into the XP-G group. The cells from these patients were highly ultraviolet (UV) sensitive but not sensitive to photosensitized methylene blue, an agent that causes oxidative stress. This phenotype is in contrast to XP-G/CS cells, which are highly sensitive to this oxidative agent. Sequencing revealed a compound heterozygous genotype with two novel missense mutations: c.83C>A (p.Ala28Asp) and c.2904G>C (p.Trp968Cys). The first mutation maps to the catalytic site of the XPG protein, whereas the second may compromise binding to DNA. Functional assays indicated that the mutated alleles were unable to perform the complete repair of UV-irradiated plasmids; however, full correction was observed for oxidatively damaged plasmids. Therefore, the XP phenotype of these patients is caused by novel missense mutations that specifically affect DNA repair for UV- but not oxidative-stress-induced DNA damage, and implications for XP versus XP/CS phenotype are discussed.
Novel XPG (ERCC5) Mutations Affect DNA Repair and Cell Survival after Ultraviolet but not Oxidative Stress.
Nardo T;Stefanini M;
2013
Abstract
Nucleotide excision repair (NER) is the most flexible of all known DNA-repair mechanisms, and XPG is a 3'-endonuclease that participates in NER. Mutations in this gene (ERCC5) may result in the human syndrome xeroderma pigmentosum (XP) and, in some cases, in the complex phenotype of Cockayne syndrome (CS). Two Brazilian XP siblings, who were mildly affected, were investigated and classified into the XP-G group. The cells from these patients were highly ultraviolet (UV) sensitive but not sensitive to photosensitized methylene blue, an agent that causes oxidative stress. This phenotype is in contrast to XP-G/CS cells, which are highly sensitive to this oxidative agent. Sequencing revealed a compound heterozygous genotype with two novel missense mutations: c.83C>A (p.Ala28Asp) and c.2904G>C (p.Trp968Cys). The first mutation maps to the catalytic site of the XPG protein, whereas the second may compromise binding to DNA. Functional assays indicated that the mutated alleles were unable to perform the complete repair of UV-irradiated plasmids; however, full correction was observed for oxidatively damaged plasmids. Therefore, the XP phenotype of these patients is caused by novel missense mutations that specifically affect DNA repair for UV- but not oxidative-stress-induced DNA damage, and implications for XP versus XP/CS phenotype are discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.