Spectral analysis provides a library of shape description elements intrinsically defined by the shape itself. Among all, the eigenfunctions of the Laplace-Beltrami operator can be thought as a set of real valued functions that implicitly abstract and code the shape. In this scenario, this paper introduces a new shape signature derived from the mutual distances between couples of Laplace-Beltrami eigenfunctions. This signature can be seen as a feature vector that acts as an intrinsic shape pattern. Experiments show that it can be effectively used for shape retrieval and its robustness with respect to changes in topology, model resampling, small perturbations and pose variations

Shape comparison through mutual distances of real functions

S Biasotti
2010

Abstract

Spectral analysis provides a library of shape description elements intrinsically defined by the shape itself. Among all, the eigenfunctions of the Laplace-Beltrami operator can be thought as a set of real valued functions that implicitly abstract and code the shape. In this scenario, this paper introduces a new shape signature derived from the mutual distances between couples of Laplace-Beltrami eigenfunctions. This signature can be seen as a feature vector that acts as an intrinsic shape pattern. Experiments show that it can be effectively used for shape retrieval and its robustness with respect to changes in topology, model resampling, small perturbations and pose variations
2010
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
978-1-4503-0160-2
Shape description
3D shape retrieval
scalar functions
Laplace-Beltrami eigenfunctions
File in questo prodotto:
File Dimensione Formato  
prod_85292-doc_19053.pdf

non disponibili

Descrizione: Articolo pubblicato
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_85292-doc_19054.pdf

non disponibili

Descrizione: Scansione prima pagina
Dimensione 46.99 kB
Formato Adobe PDF
46.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_85292-doc_30227.pdf

non disponibili

Descrizione: Preface
Dimensione 473.88 kB
Formato Adobe PDF
473.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/84805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact