In this paper our concern is the recovery of a highly regular function by a discrete set $X$ of data with arbitrary distribution. We consider the case of a nonstationary multiquadric interpolant that presents numerical breakdown. Therefore we propose a global least squares multiquadric approximant with a center set $T$ of maximal size and obtained by a new thinning technique. The new thinning scheme removes the local bad conditions in order to obtain $\axt$ well conditioned. The choice of working on local subsets of the data set $X$ provides an effective solution. Some numerical examples to validate the goodness of our proposal are given.

Stable multiquadric approximation by local thinning

L Lenarduzzi
2010

Abstract

In this paper our concern is the recovery of a highly regular function by a discrete set $X$ of data with arbitrary distribution. We consider the case of a nonstationary multiquadric interpolant that presents numerical breakdown. Therefore we propose a global least squares multiquadric approximant with a center set $T$ of maximal size and obtained by a new thinning technique. The new thinning scheme removes the local bad conditions in order to obtain $\axt$ well conditioned. The choice of working on local subsets of the data set $X$ provides an effective solution. Some numerical examples to validate the goodness of our proposal are given.
2010
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
9788415031536
scattered data
thinning
non stationary multiquadric approximant
File in questo prodotto:
File Dimensione Formato  
prod_85301-doc_6972.pdf

non disponibili

Descrizione: Stable multiquadric approximation by local thinning
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/84812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact