Crustal stress can be monitored by acoustic emissions (AE, ultrasound), which give an indication of whether a physical system is subject to stress, either of tectonic or endogenous origin. AE intensity critically depends on the damping of the signal; however, AE signals are clear indicators of the fatigue state of the crustal structures constituting the AE source. This aspect can be studied by fractal analysis of AE time series; these are, however, not suited for earthquake forecasting, as they only denote a changing state involving large lithospheric volumes. Several case histories from Italy show that an increased high-frequency AE activity (200 kHz) occurs approximately seven to eight months in advance of large earthquakes that affect areas of a few hundred kilometres radius, and an increased low-frequency AE activity (at 25 kHz) is observed several weeks in advance. Low-frequency AE also correlate with soil exhalation (water-well chemistry) and CH4, whereas fractal analysis of AE signals recorded close to a 'future' epicentral area gives a clear indication of the evolution of the system from about two months before the mainshock. This suggests that systematic monitoring of crustal stress variations may be used for assessing the time evolution of seismic activity.

Crustal stress crises and seismic activity in the Italian peninsula investigated by fractal analysis of acoustic emission, soil exhalation and seismic data

G PAPARO;M POSCOLIERI;
2006

Abstract

Crustal stress can be monitored by acoustic emissions (AE, ultrasound), which give an indication of whether a physical system is subject to stress, either of tectonic or endogenous origin. AE intensity critically depends on the damping of the signal; however, AE signals are clear indicators of the fatigue state of the crustal structures constituting the AE source. This aspect can be studied by fractal analysis of AE time series; these are, however, not suited for earthquake forecasting, as they only denote a changing state involving large lithospheric volumes. Several case histories from Italy show that an increased high-frequency AE activity (200 kHz) occurs approximately seven to eight months in advance of large earthquakes that affect areas of a few hundred kilometres radius, and an increased low-frequency AE activity (at 25 kHz) is observed several weeks in advance. Low-frequency AE also correlate with soil exhalation (water-well chemistry) and CH4, whereas fractal analysis of AE signals recorded close to a 'future' epicentral area gives a clear indication of the evolution of the system from about two months before the mainshock. This suggests that systematic monitoring of crustal stress variations may be used for assessing the time evolution of seismic activity.
2006
Istituto di Acustica e Sensoristica - IDASC - Sede Roma Tor Vergata
1-86239-201-3
crustal stress
seismic activity
AE monitoring
fractal analysis
soil exalation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/87064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact