Short-latency (10-50 ms) median nerve somatosensory evoked potentials (SEPs) from four normal subjects were analysed by means of temporal segmentation techniques and source derivation methods. In each case the responses were recorded using 32 electrodes. Dipolar optimization was carried out with a time-varying technique, using three different approaches: regional sources estimation, spherical source estimation (one radial and one tangential component), and multiple dipolar approach. This was to assess the relative influence on the dipolar solution of the different optimization techniques. The effect of the different number of channels in the estimation procedures has been also investigated. The methods of optimization are crucial, particularly for the orientation of P22. In all cases the source location estimated with the 32-electrode montage was shifted towards the centre of the spheres.
Temporal segmentation and multiple source analysis of short-latency median nerve SEPs
Ravazzani P;Tognola G;Grandori F;
1995
Abstract
Short-latency (10-50 ms) median nerve somatosensory evoked potentials (SEPs) from four normal subjects were analysed by means of temporal segmentation techniques and source derivation methods. In each case the responses were recorded using 32 electrodes. Dipolar optimization was carried out with a time-varying technique, using three different approaches: regional sources estimation, spherical source estimation (one radial and one tangential component), and multiple dipolar approach. This was to assess the relative influence on the dipolar solution of the different optimization techniques. The effect of the different number of channels in the estimation procedures has been also investigated. The methods of optimization are crucial, particularly for the orientation of P22. In all cases the source location estimated with the 32-electrode montage was shifted towards the centre of the spheres.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


