A finite element approximation is proposed as solution of the von Neumann problem for the Poisson equation $Lu=f$, where $f$ represents a dipolar source. The solution is searched in the form $u=v+u\sb 0$. The term $u\sb 0$ is the fundamental singularity of $u$ defined in a small neighbourhood of the source, where anisotropy can be considered uniform, and null elsewhere. Numerical results are presented and discussed.

Simulazione numerica di campi elettrici in elettrocardiologia

M Pennacchio
1992

Abstract

A finite element approximation is proposed as solution of the von Neumann problem for the Poisson equation $Lu=f$, where $f$ represents a dipolar source. The solution is searched in the form $u=v+u\sb 0$. The term $u\sb 0$ is the fundamental singularity of $u$ defined in a small neighbourhood of the source, where anisotropy can be considered uniform, and null elsewhere. Numerical results are presented and discussed.
1992
finite element approximation
Neumann problem
Poisson equation
dipolar source
fundamental singularity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/8890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact