Low temperature monochromatic cathodoluminescence (CL) spectral analyses and imaging were used to determine the widths of resistive regions (due to Fe diffusion) in multi-quantum-well (MQW) InP-based laser devices and to detect the different amount of damage induced by alternative In-situ Etching (ISE) and Reactive Ion Etching (RIE) techniques. The widths of the resistive regions were estimated by comparing the 5 K CL emission width from the MQW and the actual width as obtained by SEM investigations. Monochromatic CL also did not reveal any emission from the InP:Sn layer between semi-insulating material (Fe-doped LnP) and p-type layer (Zn-doped InP), indicating interdiffusion of Fe and Zn laterally the MQW, and the presence of substantial Sn diffusion (up to 2500 nanometers) into the substrate.
Spectrally resolved cathodoluminescence determination of dopant diffusion in InP/InGaAsP based multi quantum well Rabry-Perot lasers
C Ferrari;L Lazzarini;G Salviati;
2000
Abstract
Low temperature monochromatic cathodoluminescence (CL) spectral analyses and imaging were used to determine the widths of resistive regions (due to Fe diffusion) in multi-quantum-well (MQW) InP-based laser devices and to detect the different amount of damage induced by alternative In-situ Etching (ISE) and Reactive Ion Etching (RIE) techniques. The widths of the resistive regions were estimated by comparing the 5 K CL emission width from the MQW and the actual width as obtained by SEM investigations. Monochromatic CL also did not reveal any emission from the InP:Sn layer between semi-insulating material (Fe-doped LnP) and p-type layer (Zn-doped InP), indicating interdiffusion of Fe and Zn laterally the MQW, and the presence of substantial Sn diffusion (up to 2500 nanometers) into the substrate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.