The genetic improvement of crop plants is the most viable approach to meeting the increasing demand for agricultural output. This goal may be achieved by using the wealth of genetic variation provided by nature. Until now, scientists have been unable to exploit the genetic potential warehoused in plant germplasm repositories for quantitative traits associated with agricultural yield. Here we review the development and application of the advanced-backcross and introgression-line breeding populations for the identification of wild species derived chromosome segments that improve agricultural performance of elite germplasm. The results of studies in a wide range of crops indicate that, unlike their domestic relatives, which are often depleted in genetic variation, wild population of plants carry a tremendous wealth of potentially valuable alleles, many of which would not have been predicted from the phenotype of the wild plants. The results from these studies may help open up new sources of genetic variation for plant breeding and biotechnology and shed light on the nature of quantitative trait variation.

Exploitation of natural biodiversity through genomics.

Grandillo S;
2008

Abstract

The genetic improvement of crop plants is the most viable approach to meeting the increasing demand for agricultural output. This goal may be achieved by using the wealth of genetic variation provided by nature. Until now, scientists have been unable to exploit the genetic potential warehoused in plant germplasm repositories for quantitative traits associated with agricultural yield. Here we review the development and application of the advanced-backcross and introgression-line breeding populations for the identification of wild species derived chromosome segments that improve agricultural performance of elite germplasm. The results of studies in a wide range of crops indicate that, unlike their domestic relatives, which are often depleted in genetic variation, wild population of plants carry a tremendous wealth of potentially valuable alleles, many of which would not have been predicted from the phenotype of the wild plants. The results from these studies may help open up new sources of genetic variation for plant breeding and biotechnology and shed light on the nature of quantitative trait variation.
2008
Istituto di Bioscienze e Biorisorse
140206294X
AB-QTL method
introgression lines
exotic germplasm
marker-assisted selection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/92068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact