Gasoline Direct Injection (GDI) spark ignition engines equipped with the Common Rail (CR) system strongly improve engine performance in terms of fuel consumption and pollutant emission reduction. As a drawback the fuel pressure in the rail has to be kept as constant as possible to the demanded pressure working set-points in order to achieve the advantages promised by this technology. In this work a Model Reference Adaptive Control (MRAC) algorithm based on the Minimal Control Synthesis (MCS) strategy is proposed to reduce the residual pressure in the rail. Numerical results based on a CR mean value model, previously proposed in the literature and experimentally validated, show that a very satisfactory attenuation of the pressure ripple as well as pressure tracking are attained in different working conditions. A quantitative comparison with a classical gain scheduling model-based control approach confirms furthermore the effectiveness of the proposed adaptive control strategy.

An MRAC approach for tracking and ripple attenuation of the common rail pressure for GDI engines

Umberto Montanaro;Alessandro di Gaeta;Veniero Giglio
2011

Abstract

Gasoline Direct Injection (GDI) spark ignition engines equipped with the Common Rail (CR) system strongly improve engine performance in terms of fuel consumption and pollutant emission reduction. As a drawback the fuel pressure in the rail has to be kept as constant as possible to the demanded pressure working set-points in order to achieve the advantages promised by this technology. In this work a Model Reference Adaptive Control (MRAC) algorithm based on the Minimal Control Synthesis (MCS) strategy is proposed to reduce the residual pressure in the rail. Numerical results based on a CR mean value model, previously proposed in the literature and experimentally validated, show that a very satisfactory attenuation of the pressure ripple as well as pressure tracking are attained in different working conditions. A quantitative comparison with a classical gain scheduling model-based control approach confirms furthermore the effectiveness of the proposed adaptive control strategy.
2011
Istituto Motori - IM - Sede Napoli
978-3-902661-93-7
Adaptive control
Automotive control
Disturbance rejection
Common Rail
GDI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/114088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact