We prove that if the exponent function p((.)) satisfies log-Holder continuity conditions locally and at infinity, then the fractional maximal operator M(alpha), 0 < alpha < n, maps L(p(.)) to L(q(.)), where 1/p(x) - 1/q(x) = alpha/n. We also prove a weak-type inequality corresponding to the weak (1, n/(n - a)) inequality for M(alpha). We build upon earlier work on the Hardy-Littlewood maximal operator by Cruz-Uribe, Fiorenza and Neugebauer [3]. As a consequence of these results for M(alpha), we show that the fractional integral operator I(alpha) satisfies the same norm inequalities. These in turn yield a generalization of the Sobolev embedding theorem to variable L(p) spaces.

The fractional maximal operator and fractional integrals on variable L^p spaces

Capone C;Fiorenza A
2007

Abstract

We prove that if the exponent function p((.)) satisfies log-Holder continuity conditions locally and at infinity, then the fractional maximal operator M(alpha), 0 < alpha < n, maps L(p(.)) to L(q(.)), where 1/p(x) - 1/q(x) = alpha/n. We also prove a weak-type inequality corresponding to the weak (1, n/(n - a)) inequality for M(alpha). We build upon earlier work on the Hardy-Littlewood maximal operator by Cruz-Uribe, Fiorenza and Neugebauer [3]. As a consequence of these results for M(alpha), we show that the fractional integral operator I(alpha) satisfies the same norm inequalities. These in turn yield a generalization of the Sobolev embedding theorem to variable L(p) spaces.
2007
Istituto Applicazioni del Calcolo ''Mauro Picone''
fractional maximal operator
fractional integral operator
Sobolev embedding theorem
variable Lebesgue space
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/116484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 136
social impact