The recovery of the implant-induced damage and the defects present after thermal annealing at 650 °C in Fe-implanted InP have been investigated by TEM, RBS and X-ray diffractometry as a function of the annealing time that was varied betweeen 0.5 and 2 h. The near-surface damaged layer was removed only for annealing times >= 1.5 h. The annealed samples contained stacking fault tetrahedra of vacancy type, extrinsic dislocation loops and microdefects. These extended defects were mostly localized in a band corresponding to the region of transition between amorphous top layer and crystalline substrate as was detected in the as-implanted sample. Stacking fault tetrahedra and loops have also been observed before and beyond this band, respectively. Such defects could be due to either shear strains at the recrystallization front or implant-induced point defects.
Extended Defects in Fe-Implanted InP After Thermal Annealing
C Frigeri;C Bocchi;
1994
Abstract
The recovery of the implant-induced damage and the defects present after thermal annealing at 650 °C in Fe-implanted InP have been investigated by TEM, RBS and X-ray diffractometry as a function of the annealing time that was varied betweeen 0.5 and 2 h. The near-surface damaged layer was removed only for annealing times >= 1.5 h. The annealed samples contained stacking fault tetrahedra of vacancy type, extrinsic dislocation loops and microdefects. These extended defects were mostly localized in a band corresponding to the region of transition between amorphous top layer and crystalline substrate as was detected in the as-implanted sample. Stacking fault tetrahedra and loops have also been observed before and beyond this band, respectively. Such defects could be due to either shear strains at the recrystallization front or implant-induced point defects.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


