This paper proposes to use case-based-reasoning for grey-level image segmentation. Different approaches to image segmentation have been proposed in the literature. The selection of the segmentation approach and the assignment of the values to the parameters involved in the selected algorithm depend on image domain and on the specific application. Case-based-reasoning seems a promising way to make the above selection automatic. In this paper, we describe the results of a preliminary study done in this respect. In particular, we refer to the automatic selection of the values of the parameters for a new watershed image segmentation algorithm.

Case-based-reasoning for image segmentation

Frucci M;Sanniti di Baja G
2008

Abstract

This paper proposes to use case-based-reasoning for grey-level image segmentation. Different approaches to image segmentation have been proposed in the literature. The selection of the segmentation approach and the assignment of the values to the parameters involved in the selected algorithm depend on image domain and on the specific application. Case-based-reasoning seems a promising way to make the above selection automatic. In this paper, we describe the results of a preliminary study done in this respect. In particular, we refer to the automatic selection of the values of the parameters for a new watershed image segmentation algorithm.
2008
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
segmentation
watershed transformation
case-based-reasoning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/118302
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 7
social impact