Lead zirconium titanate PbZr0.53Ti0.47O3 (PZT) thin films have been obtained by sol-gel synthesis, deposited on different substrates [float glass, indium tin oxide (ITO)-coated float glass, and intrinsic silicon wafer], and later subjected to different thermal treatments. The morphologic and the structural properties of both PZT thin films and substrates have been investigated by scanning electron microscope and their composition was determined by energy dispersive x-ray (EDX) analysis. Moreover, variable angle spectroscopic ellipsometry provides relevant information on the electronic and optical properties of the samples. In particular, the optical constant dispersion of PZT deposited on ITO-coated float glasses shows a small absorption resonance in the near IR region, not observed in PZT films deposited on the other substrates, so that such absorption resonance can be explained by interfacial effects between ITO and PZT layers. This hypothesis is also supported by EDX measurements, showing an interdiffusion of lead and indium ions, across the PZT-ITO interface, that can generate a peculiar charge distribution in this region.

Thermally induced modifications of the optic properties of lead zirconate titanate thin films obtained on different substrates by sol-gel synthesis

Castriota M;Scaramuzza N;Versace C;Strangi G;Bartolino R
2008

Abstract

Lead zirconium titanate PbZr0.53Ti0.47O3 (PZT) thin films have been obtained by sol-gel synthesis, deposited on different substrates [float glass, indium tin oxide (ITO)-coated float glass, and intrinsic silicon wafer], and later subjected to different thermal treatments. The morphologic and the structural properties of both PZT thin films and substrates have been investigated by scanning electron microscope and their composition was determined by energy dispersive x-ray (EDX) analysis. Moreover, variable angle spectroscopic ellipsometry provides relevant information on the electronic and optical properties of the samples. In particular, the optical constant dispersion of PZT deposited on ITO-coated float glasses shows a small absorption resonance in the near IR region, not observed in PZT films deposited on the other substrates, so that such absorption resonance can be explained by interfacial effects between ITO and PZT layers. This hypothesis is also supported by EDX measurements, showing an interdiffusion of lead and indium ions, across the PZT-ITO interface, that can generate a peculiar charge distribution in this region.
2008
INFM
LIQUID-CRYSTAL CELLS
DOPED INDIUM-OXIDE
SPECTROSCOPIC ELLIPSOMETRY
IN2O3 FILMS
ELECTRODES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/121514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact