The polarization gating method in combination with few-optical-cycle driving pulses with controlled waveform is a powerful technique for the generation of isolated few-cycle attosecond pulses. We show that such a technique allows one to generate attosecond pulses tunable in a broad spectral region, corresponding to more than 26eV. Complete temporal characterization of the attosecond pulses has been obtained by using the frequency resolved optical gating for complete reconstruction of attosecond bursts technique. The physical processes which determine the temporal confinement of the extreme ultraviolet radiation and the effects of various experimental parameters on the electric field of the attosecond pulses have been investigated using numerical simulations based on the nonadiabatic saddle-point method.
Attosecond metrology in the few-optical-cycle regime
Sansone G;Vozzi C;Stagira S;Nisoli M
2008
Abstract
The polarization gating method in combination with few-optical-cycle driving pulses with controlled waveform is a powerful technique for the generation of isolated few-cycle attosecond pulses. We show that such a technique allows one to generate attosecond pulses tunable in a broad spectral region, corresponding to more than 26eV. Complete temporal characterization of the attosecond pulses has been obtained by using the frequency resolved optical gating for complete reconstruction of attosecond bursts technique. The physical processes which determine the temporal confinement of the extreme ultraviolet radiation and the effects of various experimental parameters on the electric field of the attosecond pulses have been investigated using numerical simulations based on the nonadiabatic saddle-point method.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.