This paper proposes an approach to efficiently execute approximate top-k classification (that is, identifying the best k elements of a class) using Support Vector Machines, in web-scale datasets, without significant loss of effectiveness. The novelty of the proposed approach, with respect to other approaches in literature, is that it allows speeding-up several classifiers, each one defined with different kernels and kernel parameters, by using one single index.

Indexing support vector machines for efficient top-k classification

Amato G;Bolettieri P;Falchi F;Rabitti F;Savino P
2011

Abstract

This paper proposes an approach to efficiently execute approximate top-k classification (that is, identifying the best k elements of a class) using Support Vector Machines, in web-scale datasets, without significant loss of effectiveness. The novelty of the proposed approach, with respect to other approaches in literature, is that it allows speeding-up several classifiers, each one defined with different kernels and kernel parameters, by using one single index.
2011
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-61208-005-5
Machine learning
Classification
Support vector machines
Similarity searching
File in questo prodotto:
File Dimensione Formato  
prod_200144-doc_44005.pdf

solo utenti autorizzati

Descrizione: Indexing support vector machines for efficient top-k classification
Tipologia: Versione Editoriale (PDF)
Dimensione 299.23 kB
Formato Adobe PDF
299.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/12154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact