In hyperthermophilic Archaea genomic DNA is from relaxed to positively supercoiled in vivo because of the action of the enzyme reverse gyrase, and this peculiarity is believed to be related to stabilization of DNA against denaturation. We report the identification and characterization of Smj12, a novel protein of Sulfolobus solfataricus, which is homologous to members of the so-called Bacterial-Archaeal family of regulators, found in multiple copies in Eubacteria and Archaea. Whereas other members of the family are sequence-specific DNA- binding proteins and have been implicated in transcriptional regulation, Smj12 is a nonspecific DNA-binding protein that stabilizes the double helix and induces positive supercoiling. Smj12 is not abundant, suggesting that it is not a general architectural protein, but rather has a specialized function and/or localization. Smj12 is the first protein with the described features identified in Archaea and might participate in control of superhelicity during DNA transactions.

A novel member of the Bacterial-Archaeal regulator family is a non-specific DNA binding protein and induces positive supercoiling

Rossi M;Ciaramella M
2001

Abstract

In hyperthermophilic Archaea genomic DNA is from relaxed to positively supercoiled in vivo because of the action of the enzyme reverse gyrase, and this peculiarity is believed to be related to stabilization of DNA against denaturation. We report the identification and characterization of Smj12, a novel protein of Sulfolobus solfataricus, which is homologous to members of the so-called Bacterial-Archaeal family of regulators, found in multiple copies in Eubacteria and Archaea. Whereas other members of the family are sequence-specific DNA- binding proteins and have been implicated in transcriptional regulation, Smj12 is a nonspecific DNA-binding protein that stabilizes the double helix and induces positive supercoiling. Smj12 is not abundant, suggesting that it is not a general architectural protein, but rather has a specialized function and/or localization. Smj12 is the first protein with the described features identified in Archaea and might participate in control of superhelicity during DNA transactions.
2001
Istituto di Biochimica delle Proteine - IBP - Sede Napoli
Archaea
Termofili
DNA binding protein
Struttura del DNA
Superelica
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/122363
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact