A high degree of crystallinity is obtained in nc-Si:H films deposited by r.f. PECVD, produced from SiF4-H2-He mixtures. The amorphous-to-nanocrystalline transition is favored because of the presence of F atoms, which preferentially etch the amorphous phase. The addition of He to the SiF4-H2 gas mixture gives an increase of F and H atoms in the plasma, thus inducing higher crystallinity. A further improvement in the nc-Si:H film structure and properties is obtained by adjusting the r.f. power and the deposition temperature. Under optimized plasma conditions, substrate temperatures as low as 120°C can be reached for the deposition of nc-Si:H having 100% of crystallinity.

Plasma enhanced chemical vapor deposition of nanocrystalline silicon films from SiF4-H2-He at low temperature

G Cicala;
1999

Abstract

A high degree of crystallinity is obtained in nc-Si:H films deposited by r.f. PECVD, produced from SiF4-H2-He mixtures. The amorphous-to-nanocrystalline transition is favored because of the presence of F atoms, which preferentially etch the amorphous phase. The addition of He to the SiF4-H2 gas mixture gives an increase of F and H atoms in the plasma, thus inducing higher crystallinity. A further improvement in the nc-Si:H film structure and properties is obtained by adjusting the r.f. power and the deposition temperature. Under optimized plasma conditions, substrate temperatures as low as 120°C can be reached for the deposition of nc-Si:H having 100% of crystallinity.
1999
Istituto di Nanotecnologia - NANOTEC
nc-Si:H
SiF4-H2-He plasma
Optical emission spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/127742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact