This study focuses on the development of an advanced in vitro biohybrid culture model system based on the use of hollow fibre membranes (HFMs) and hippocampal neurons in order to promote the formation of a high density neuronal network. Polyacrylonitrile (PAN) and modified polyetheretherketone (PEEK-WC) membranes were prepared in hollow fibre configuration. The morphological and metabolic behaviour of hippocampal neurons cultured on PAN HF membranes were compared with those cultured on PEEK-WC HF. The differences of cell behaviour between HFMs were evidenced by the morphometric analysis in terms of axon length and also by the investigation of metabolic activity in terms of neurotrophin secretion. These findings suggested that PAN HFMs induced the in vitro reconstruction of very highly functional and complex neuronal networks. Thus, these biomaterials could potentially be used for the in vitro realization of a functional hippocampal tissue analogue for the study of neurobiological functions and/or neurodegenerative diseases.

PAN hollow fiber membranes elicit functional hippocampal neuronal network

Sabrina Morelli;Antonella Piscioneri;Simona Salerno;Franco Tasselli;Enrico Drioli;Loredana De Bartolo
2012

Abstract

This study focuses on the development of an advanced in vitro biohybrid culture model system based on the use of hollow fibre membranes (HFMs) and hippocampal neurons in order to promote the formation of a high density neuronal network. Polyacrylonitrile (PAN) and modified polyetheretherketone (PEEK-WC) membranes were prepared in hollow fibre configuration. The morphological and metabolic behaviour of hippocampal neurons cultured on PAN HF membranes were compared with those cultured on PEEK-WC HF. The differences of cell behaviour between HFMs were evidenced by the morphometric analysis in terms of axon length and also by the investigation of metabolic activity in terms of neurotrophin secretion. These findings suggested that PAN HFMs induced the in vitro reconstruction of very highly functional and complex neuronal networks. Thus, these biomaterials could potentially be used for the in vitro realization of a functional hippocampal tissue analogue for the study of neurobiological functions and/or neurodegenerative diseases.
2012
Istituto per la Tecnologia delle Membrane - ITM
hollow fibre
membrane
hippocampal neurons
neuronal network
neuronal tissue engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/12856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact