Liquid State Machine (LSM) is a neural system based on spiking neurons that implements a mapping between functions of time. A typical application of LSM is classification of time functions obtained observing the state of the liquid by using a memoryless readout circuit, usually implemented by a linear perceptron. Due to the high number of neurons in the liquid the training of the readout is difficult. In this paper we show that using the Spike-Timing-Dependent Plasticity (STDP) a single neuron with short training session can be used to recognize the state of the liquid due to an input signal. Using STDP it is possible to identify the spikes timing of the neurons in the liquid and this allows to correctly classify a large set of input signals, the method is also robust to noise and amplitude variations
An Application of Spike-Timing-Dependent Plasticity to Readout Circuit for Liquid State Machine
Antonio Chella;Riccardo Rizzo;
2007
Abstract
Liquid State Machine (LSM) is a neural system based on spiking neurons that implements a mapping between functions of time. A typical application of LSM is classification of time functions obtained observing the state of the liquid by using a memoryless readout circuit, usually implemented by a linear perceptron. Due to the high number of neurons in the liquid the training of the readout is difficult. In this paper we show that using the Spike-Timing-Dependent Plasticity (STDP) a single neuron with short training session can be used to recognize the state of the liquid due to an input signal. Using STDP it is possible to identify the spikes timing of the neurons in the liquid and this allows to correctly classify a large set of input signals, the method is also robust to noise and amplitude variationsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.