Gliadin proteins are primarily responsible for celiac disease. As gliadin is a complex mixture of proteins difficult to solubilize and to extract from food, it is difficult to develop an assay capable of accurate quantization of gliadin in food for celiac patients. In this work, we present an advanced fluorescence assay for the detection of traces of gliadin in food. The described assay is based on measurement of the fluctuations of fluorescein-labeled gliadin peptides (GP) in a focused laser beam in the absence and in the presence of anti-GP antibodies. A competitive assay based on the utilization of unlabeled GP was developed. The obtained results indicate that the combination of high-avidity IgG antibodies together with the innovative fluorescence immunoassay strategy resulted in a gluten detection limit of 0.006 ppm, which it is much lower than the values reported in the literature.
Fluorescence correlation spectroscopy assay for gliadin in food
Varriale A;Rossi M;Staiano M;Rossi M;D'Auria S
2007
Abstract
Gliadin proteins are primarily responsible for celiac disease. As gliadin is a complex mixture of proteins difficult to solubilize and to extract from food, it is difficult to develop an assay capable of accurate quantization of gliadin in food for celiac patients. In this work, we present an advanced fluorescence assay for the detection of traces of gliadin in food. The described assay is based on measurement of the fluctuations of fluorescein-labeled gliadin peptides (GP) in a focused laser beam in the absence and in the presence of anti-GP antibodies. A competitive assay based on the utilization of unlabeled GP was developed. The obtained results indicate that the combination of high-avidity IgG antibodies together with the innovative fluorescence immunoassay strategy resulted in a gluten detection limit of 0.006 ppm, which it is much lower than the values reported in the literature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.