We report on the fabrication of the first bicolor micropixelated OLED from a single molecular material using a single-step bottom up procedure, The implementation of a deposition technique, based on a spatial-switch and con formational-sensitive STD surface-tension-driven lithography, has allowed us to exploit the spontaneous supramolecular properties and the conformational flexibility of a conjugated thiophene-based material, 6-bis-(50-hexyl-[2, 20]bithiophen-5-yl)-3, 5-dimethyl-dithieno[3, 2-b: 20, 30-d]-thiophene (DTT7Me). The existence of two regularly alternating emitting regions on a micrometer scale allows obtaining electroluminescent emission at two different wavelengths from a single material.
Bicolor Electroluminescent Pixels from Single Active Molecular Material
Viola I;Favaretto L;Barbarella G;Gigli G
2010
Abstract
We report on the fabrication of the first bicolor micropixelated OLED from a single molecular material using a single-step bottom up procedure, The implementation of a deposition technique, based on a spatial-switch and con formational-sensitive STD surface-tension-driven lithography, has allowed us to exploit the spontaneous supramolecular properties and the conformational flexibility of a conjugated thiophene-based material, 6-bis-(50-hexyl-[2, 20]bithiophen-5-yl)-3, 5-dimethyl-dithieno[3, 2-b: 20, 30-d]-thiophene (DTT7Me). The existence of two regularly alternating emitting regions on a micrometer scale allows obtaining electroluminescent emission at two different wavelengths from a single material.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.