Enzyme-mediated reactions are a useful tool in mutation detection when using a microarray format. Discriminating probes attached to the surface of a DNA chip have to be accessible to target DNA and to the enzyme (ligase or polymerase) that catalyses the formation of a new phosphodiester bond. This requires an appropriate chemical platform. Recently, an oligonucleotide hairpin architecture incorporating multiple phosphorothioate moieties along the loop has been proposed as an effective approach to solid-phase minisequencing. We have explored in depth several variables (stem length, number of phosphorothioates, stem-loop architecture versus linear structure) involved in this strategy by using a solid-phase ligation reaction. Microarrays were fabricated either from aminosilyl-modified glass or from aminated polymeric surfaces made of poly-lysine. Both platforms were bromoacetylated and reacted with thiophosphorylated oligonucleotides. The resulting microarrays were tested using either a synthetic template or a PCR-amplified 16S rRNA genomic region as the target sequence. Our results confirm the robustness of the proposed chemistry. We extend its range of application to solid-phase ligation, demonstrating the effectiveness of multiple anchors and suggest that linear oligonucleotides incorporating multiple phosphorothioates are equivalent to their hairpin-structured counterparts.

Investigation of the multiple anchors approach in oligonucleotide microarray preparation using linear and stem-loop structured probes.

Bordoni R;Consolandi C;Castiglioni B;De Bellis G
2002

Abstract

Enzyme-mediated reactions are a useful tool in mutation detection when using a microarray format. Discriminating probes attached to the surface of a DNA chip have to be accessible to target DNA and to the enzyme (ligase or polymerase) that catalyses the formation of a new phosphodiester bond. This requires an appropriate chemical platform. Recently, an oligonucleotide hairpin architecture incorporating multiple phosphorothioate moieties along the loop has been proposed as an effective approach to solid-phase minisequencing. We have explored in depth several variables (stem length, number of phosphorothioates, stem-loop architecture versus linear structure) involved in this strategy by using a solid-phase ligation reaction. Microarrays were fabricated either from aminosilyl-modified glass or from aminated polymeric surfaces made of poly-lysine. Both platforms were bromoacetylated and reacted with thiophosphorylated oligonucleotides. The resulting microarrays were tested using either a synthetic template or a PCR-amplified 16S rRNA genomic region as the target sequence. Our results confirm the robustness of the proposed chemistry. We extend its range of application to solid-phase ligation, demonstrating the effectiveness of multiple anchors and suggest that linear oligonucleotides incorporating multiple phosphorothioates are equivalent to their hairpin-structured counterparts.
2002
BIOLOGIA E BIOTECNOLOGIA AGRARIA
Istituto di Tecnologie Biomediche - ITB
microarray
piattaforma chimica
gene mutation analys
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/146633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact