We report on a monolithic polymeric microcavity laser with all dielectric mirrors realized by low-temperature electron-beam evaporation. The vertical heterostructure was realized by 9.5 TiOx/SiOx pairs evaporated onto an active conjugated polymer, that was previously spincast onto the bottom distributed Bragg reflector (DBR). The cavity supports single-mode lasing at 509 nm, with a linewidth of 1.8 nm, and a lasing threshold of 84 mu J/cm(2). We also report on the emission properties of the polymer we used, investigated by a pump-probe technique. These results show that low-temperature electron-beam evaporation is a powerful and straightforward fabrication technique for molecular-based fully integrable microcavity resonators.

Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors

D Pisignano;S Longhi;
2006

Abstract

We report on a monolithic polymeric microcavity laser with all dielectric mirrors realized by low-temperature electron-beam evaporation. The vertical heterostructure was realized by 9.5 TiOx/SiOx pairs evaporated onto an active conjugated polymer, that was previously spincast onto the bottom distributed Bragg reflector (DBR). The cavity supports single-mode lasing at 509 nm, with a linewidth of 1.8 nm, and a lasing threshold of 84 mu J/cm(2). We also report on the emission properties of the polymer we used, investigated by a pump-probe technique. These results show that low-temperature electron-beam evaporation is a powerful and straightforward fabrication technique for molecular-based fully integrable microcavity resonators.
2006
Istituto di fotonica e nanotecnologie - IFN
INFM
ORGANIC MICROCAVITY
THIN-FILMS
COPOLYMER
ARRAYS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/146653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact