We show that thin films grown by vacuum sublimation, or formed by melted powders, of semiconductor alpha-quinquethiophene (T5) exhibit a hierarchical self-affinity organization that spans scales from tens of nanometers to hundreds of micrometers. T5 organization was investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), and optical microscopy. XRD showed that vacuum-evaporated T5 films were characterized by a preferred orientation of the h00 planes parallel to the glass substrate, Melting of the films followed by rapid quenching to room temperature led to the formation of micrometer-sized, single-crystal-like structures, characterized by uniaxially aligned stripes. XRD proved that the melting-quenching process enhanced molecular ordering and increased the size of domains with the molecule's long axes tilted by about 65degrees with respect to the substrate plane and piled up side-by-side along parallel columns. AFM measurements on the melt-quenched structures showed that a hierarchical architecture was built by reiteration across multiple length scales of the same recurring motif. Because of the tendency of T5 to form highly crystalline vacuum-evaporated thin films, a field-effect hole mobility comparable to state-of-the-art FET mobility of alpha-sexithiophene films was reached, without any attempt to optimize deposition conditions.

Multiscale self-organization of the organic semiconductor alpha-quinquethiophene

Melucci M;Gazzano M;Barbarella G;Cavallini M;Biscarini F;Maccagnani P;
2003

Abstract

We show that thin films grown by vacuum sublimation, or formed by melted powders, of semiconductor alpha-quinquethiophene (T5) exhibit a hierarchical self-affinity organization that spans scales from tens of nanometers to hundreds of micrometers. T5 organization was investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), and optical microscopy. XRD showed that vacuum-evaporated T5 films were characterized by a preferred orientation of the h00 planes parallel to the glass substrate, Melting of the films followed by rapid quenching to room temperature led to the formation of micrometer-sized, single-crystal-like structures, characterized by uniaxially aligned stripes. XRD proved that the melting-quenching process enhanced molecular ordering and increased the size of domains with the molecule's long axes tilted by about 65degrees with respect to the substrate plane and piled up side-by-side along parallel columns. AFM measurements on the melt-quenched structures showed that a hierarchical architecture was built by reiteration across multiple length scales of the same recurring motif. Because of the tendency of T5 to form highly crystalline vacuum-evaporated thin films, a field-effect hole mobility comparable to state-of-the-art FET mobility of alpha-sexithiophene films was reached, without any attempt to optimize deposition conditions.
2003
Istituto per la Microelettronica e Microsistemi - IMM
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Field-Effect Transistor
Charge-Transport
Solid State Conformation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/150600
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact