Hydrophobins are small self-assembling proteins produced by fungi. A class I hydrophobin secreted by the basidiomycete fungus Pleurotus ostreatus was purified and identified. The pure protein is not water soluble, whereas complexes formed between the protein and glycans, produced in culture broth containing amylose, are soluble in water. Glycan structure matched to cyclic structures of alpha-(1-4) linked glucose containing from six to 16 monomers (cyclodextrins). Moreover, it was verified that not only pure cyclodextrins but also a linear oligosaccharide and even the simple glucose monomer are able to solubilize the hydrophobin in water. The aqueous solution of the protein-in the presence of the cyclic glucans-showed propensity to self-assembly, and conformational changes towards beta structure were observed on vortexing the solution. On the other hand, the pure protein dissolved in less polar solvent (60% ethanol) is not prone to self assembly, and no conformational change was observed. When the pure protein was deposited on a hydrophobic surface, it formed a very stable biofilm whose thickness was about 3 nm, whereas the biofilm was not detected on a hydrophilic surface. When the water-soluble protein-in the presence of the cyclic glucans-was used, thicker (up to 10-fold) biofilms were obtained on either hydrophilic or hydrophobic surfaces.

The Pleurotus ostreatus hydrophobin Vmh2 and its interaction with glucans

Rea I;De Stefano L;Giocondo M;
2010

Abstract

Hydrophobins are small self-assembling proteins produced by fungi. A class I hydrophobin secreted by the basidiomycete fungus Pleurotus ostreatus was purified and identified. The pure protein is not water soluble, whereas complexes formed between the protein and glycans, produced in culture broth containing amylose, are soluble in water. Glycan structure matched to cyclic structures of alpha-(1-4) linked glucose containing from six to 16 monomers (cyclodextrins). Moreover, it was verified that not only pure cyclodextrins but also a linear oligosaccharide and even the simple glucose monomer are able to solubilize the hydrophobin in water. The aqueous solution of the protein-in the presence of the cyclic glucans-showed propensity to self-assembly, and conformational changes towards beta structure were observed on vortexing the solution. On the other hand, the pure protein dissolved in less polar solvent (60% ethanol) is not prone to self assembly, and no conformational change was observed. When the pure protein was deposited on a hydrophobic surface, it formed a very stable biofilm whose thickness was about 3 nm, whereas the biofilm was not detected on a hydrophilic surface. When the water-soluble protein-in the presence of the cyclic glucans-was used, thicker (up to 10-fold) biofilms were obtained on either hydrophilic or hydrophobic surfaces.
2010
Istituto per la Microelettronica e Microsistemi - IMM
Istituto per i Processi Chimico-Fisici - IPCF
AIR-WATER-INTERFACE
STRUCTURAL-ANALYSIS
PROTEIN
SURFACE
SC3
File in questo prodotto:
File Dimensione Formato  
prod_172929-doc_12337.pdf

non disponibili

Descrizione: The Pleurotus ostreatus hydrophobin Vmh2 and its interaction with glucans
Dimensione 266.14 kB
Formato Adobe PDF
266.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/152067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact