We have explained the role of fluorine in the reduction of the self-interstitial population in a preamorphized Si layer under thermal treatment. For this purpose, we have employed a B spike layer grown by molecular-beam epitaxy as a marker for the self-interstitial local concentration. The amorphized samples were implanted with 7E12, 7E13, or 4E14 F/cm2 at 100 keV, and afterwards recrystallized by solid phase epitaxy. Thermal anneals at 750 or 850 °C were performed in order to induce the release of self-interstitials from the end-of-range ~EOR! defects and thus provoke the transient enhanced diffusion of B atoms. We have shown that the incorporation of F reduces the B enhanced diffusion in a controlled way, up to its complete suppression. It is seen that no direct interaction between B and F occurs, whereas the suppression of B enhanced diffusion is related to the F ability in reducing the excess of silicon self-interstitials emitted by the EOR source. These results are reported and discussed.

Role of fluorine in suppressing boron transient enhanced diffusion in preamorphized Si

Impellizzeri G;Mirabella S;Priolo F;Napolitani E;
2004

Abstract

We have explained the role of fluorine in the reduction of the self-interstitial population in a preamorphized Si layer under thermal treatment. For this purpose, we have employed a B spike layer grown by molecular-beam epitaxy as a marker for the self-interstitial local concentration. The amorphized samples were implanted with 7E12, 7E13, or 4E14 F/cm2 at 100 keV, and afterwards recrystallized by solid phase epitaxy. Thermal anneals at 750 or 850 °C were performed in order to induce the release of self-interstitials from the end-of-range ~EOR! defects and thus provoke the transient enhanced diffusion of B atoms. We have shown that the incorporation of F reduces the B enhanced diffusion in a controlled way, up to its complete suppression. It is seen that no direct interaction between B and F occurs, whereas the suppression of B enhanced diffusion is related to the F ability in reducing the excess of silicon self-interstitials emitted by the EOR source. These results are reported and discussed.
2004
INFM
boron
fluorine
silicon
diffusion
interstitials
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/153246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 51
social impact