Volatile Organic Compounds (VOCs) emitted from vegetation (particularly isoprenoids) represent an important source of atmospheric hydrocarbons almost double the anthropogenic source. When biogenic VOC mix with NOx in the presence of UV radiation, ozone (O3) is formed. In Italy, optimal conditions forO3 formation in terms of VOC/NOx ratios and abundance of UV radiation occur for long periods of the year. Moreover, Italian vegetation includes several species that are strong and evergreen isoprenoid emitters, and high temperatures for part of the year further stimulate these temperature-dependentemissions. We review emission of isoprenoids from Italian vegetation, current knowledge on the impact of rising O3 levels on isoprenoid emission, and evidence showing that isoprenoids can increase both the O3 flux to the plant and protection against oxidative stress because of their antioxidant functions. Thistrait not only influences plant tolerance to O3 but also may substantially alter the flux of O3 between atmosphere and biosphere.
Volatile organic compounds from Italian vegetation and their interaction with ozone
CALFAPIETRA C;FARES S;LORETO F
2009
Abstract
Volatile Organic Compounds (VOCs) emitted from vegetation (particularly isoprenoids) represent an important source of atmospheric hydrocarbons almost double the anthropogenic source. When biogenic VOC mix with NOx in the presence of UV radiation, ozone (O3) is formed. In Italy, optimal conditions forO3 formation in terms of VOC/NOx ratios and abundance of UV radiation occur for long periods of the year. Moreover, Italian vegetation includes several species that are strong and evergreen isoprenoid emitters, and high temperatures for part of the year further stimulate these temperature-dependentemissions. We review emission of isoprenoids from Italian vegetation, current knowledge on the impact of rising O3 levels on isoprenoid emission, and evidence showing that isoprenoids can increase both the O3 flux to the plant and protection against oxidative stress because of their antioxidant functions. Thistrait not only influences plant tolerance to O3 but also may substantially alter the flux of O3 between atmosphere and biosphere.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0269749108004946-main.pdf
solo utenti autorizzati
Descrizione: Volatile organic compounds from Italian vegetation and their interaction with ozone
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.48 MB
Formato
Adobe PDF
|
2.48 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.