We apply the techniques of monotone and relative rearrangements to the non rearrangement invariant spaces Lp(·) (? ) with variable exponent. In particular, we show that the maps u ? L p( ·) (? ) -> k(t )u* ? L p * (·)(0, meas? ) and u ? L p( ·) (? ) -> u* ? Lp* (·) (0, meas? ) are locally ?-Ho?lderian (u * (resp. p* ) is the decreasing (resp. increasing) rearrangement of u (resp. p)). The pointwise relations for the relative rearrangement are applied to derive the Sobolev embedding with eventually discontinuous exponents.

Relative rearrangement and Lebesgue spaces L^{p()} with variable exponent

Fiorenza A;
2007

Abstract

We apply the techniques of monotone and relative rearrangements to the non rearrangement invariant spaces Lp(·) (? ) with variable exponent. In particular, we show that the maps u ? L p( ·) (? ) -> k(t )u* ? L p * (·)(0, meas? ) and u ? L p( ·) (? ) -> u* ? Lp* (·) (0, meas? ) are locally ?-Ho?lderian (u * (resp. p* ) is the decreasing (resp. increasing) rearrangement of u (resp. p)). The pointwise relations for the relative rearrangement are applied to derive the Sobolev embedding with eventually discontinuous exponents.
2007
Istituto Applicazioni del Calcolo ''Mauro Picone''
Lebesgue spaces with variable exponent
Relative rearrangement
Monotone rearrangement
Compact Sobolev embedding
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/160210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact