Rationale: In athletes, airway inflammatory cells were found to be increased in induced sputum or bronchial biopsies. Most data were obtained after exposure to cold and dry air at rest or during exercise. Whether training affects epithelial and inflammatory cells in small airways is unknown. Objectives: To test whether endurance training under standard environmental conditions causes epithelial damage and inflammation in the small airways of mice. Methods and Measurements: Formalin-fixed, paraffin-embedded lung sections were obtained in sedentary (n 14) and endurancetrained (n 16) Swiss mice at baseline and after 15, 30, and 45 days of training. The following variables were assessed (morphometry and immunohistochemistry) in small airways (basement membrane length 1 mm): (1) integrity, proliferation, and apoptosis of bronchiolar epithelium; and (2) infiltration, activation, and apoptosis of inflammatory cells. Main Results: Compared with sedentary mice, bronchiolar epithelium of trained mice showed progressive loss of ciliated cells, slightly increased thickness, unchanged goblet cell number and appearance, and increased apoptosis and proliferation (proliferating cell nuclear antigen) (p 0.001 for all variables). Leukocytes (CD45 cells) infiltrated airway walls (p 0.0001) and accumulated within the lumen (p 0.001); however, apoptosis of CD45 cells did not differ between trained and sedentary mice. Nuclear factor-B translocation and inhibitor-alpha of NF-B (IB) phosphorylation were not increased in trained compared with sedentary mice. Conclusions: Bronchiolar epithelium showed damage and repair associated with endurance training. Training increased inflammatory cells in small airways, but inflammatory activation was not increased. These changes may represent an adaptive response to increased ventilation during exercise.

Endurance training damages small airway epithelium in mice

Giuseppe Morici;Anna Bonanno;Liboria Siena;Giovanni Bonsignore;
2007

Abstract

Rationale: In athletes, airway inflammatory cells were found to be increased in induced sputum or bronchial biopsies. Most data were obtained after exposure to cold and dry air at rest or during exercise. Whether training affects epithelial and inflammatory cells in small airways is unknown. Objectives: To test whether endurance training under standard environmental conditions causes epithelial damage and inflammation in the small airways of mice. Methods and Measurements: Formalin-fixed, paraffin-embedded lung sections were obtained in sedentary (n 14) and endurancetrained (n 16) Swiss mice at baseline and after 15, 30, and 45 days of training. The following variables were assessed (morphometry and immunohistochemistry) in small airways (basement membrane length 1 mm): (1) integrity, proliferation, and apoptosis of bronchiolar epithelium; and (2) infiltration, activation, and apoptosis of inflammatory cells. Main Results: Compared with sedentary mice, bronchiolar epithelium of trained mice showed progressive loss of ciliated cells, slightly increased thickness, unchanged goblet cell number and appearance, and increased apoptosis and proliferation (proliferating cell nuclear antigen) (p 0.001 for all variables). Leukocytes (CD45 cells) infiltrated airway walls (p 0.0001) and accumulated within the lumen (p 0.001); however, apoptosis of CD45 cells did not differ between trained and sedentary mice. Nuclear factor-B translocation and inhibitor-alpha of NF-B (IB) phosphorylation were not increased in trained compared with sedentary mice. Conclusions: Bronchiolar epithelium showed damage and repair associated with endurance training. Training increased inflammatory cells in small airways, but inflammatory activation was not increased. These changes may represent an adaptive response to increased ventilation during exercise.
2007
Istituto di biomedicina e di immunologia molecolare - IBIM - Sede Palermo
exercise
airway damage
remodeling
inflammation
apoptosis
File in questo prodotto:
File Dimensione Formato  
prod_12249-doc_27475.pdf

accesso aperto

Descrizione: Articolo pubblicato
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/160617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact