In the present paper the discretization of a particular model arising in the economic field of innovation diffusion is developed. It consists of an optimal control problem governed by an ordinary differential equation. We propose a direct optimization approach characterized by an explicit, fixed step-size continuous Runge-Kutta integration for the state variable approximation. Moreover, high-order Gaussian quadrature rules are used to discretize the objective function. In this way, the optimal control problem is converted into a nonlinear programming one which is solved by means of classical algorithms.

Direct Optimization Using Gaussian Quadrature and Continuous Runge-Kutta Methods: Application to an Innovation Diffusion Model

Diele F;Marangi C;
2004

Abstract

In the present paper the discretization of a particular model arising in the economic field of innovation diffusion is developed. It consists of an optimal control problem governed by an ordinary differential equation. We propose a direct optimization approach characterized by an explicit, fixed step-size continuous Runge-Kutta integration for the state variable approximation. Moreover, high-order Gaussian quadrature rules are used to discretize the objective function. In this way, the optimal control problem is converted into a nonlinear programming one which is solved by means of classical algorithms.
2004
Istituto Applicazioni del Calcolo ''Mauro Picone''
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/161558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact