Some inverse eigenvalue problems for matrices with Toeplitz-related structure are considered in this paper. In particular, the solutions of the inverse eigenvalue problems for Toeplitz-plus-Hankel matrices and for Toeplitz matrices having all double eigenvalues are characterized, respectively, in close form. Being centrosymmetric itself, the Toeplitz-plus-Hankel solution can be used as an initial value in a continuation method to solve the more difficult inverse eigenvalue problem for symmetric Toeplitz matrices. Numerical testing results show a clear advantage of such an application.
On some inverse eigenvalue problems with Toeplitz-related structure
Diele F;Laudadio T;Mastronardi N
2004
Abstract
Some inverse eigenvalue problems for matrices with Toeplitz-related structure are considered in this paper. In particular, the solutions of the inverse eigenvalue problems for Toeplitz-plus-Hankel matrices and for Toeplitz matrices having all double eigenvalues are characterized, respectively, in close form. Being centrosymmetric itself, the Toeplitz-plus-Hankel solution can be used as an initial value in a continuation method to solve the more difficult inverse eigenvalue problem for symmetric Toeplitz matrices. Numerical testing results show a clear advantage of such an application.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.