Some inverse eigenvalue problems for matrices with Toeplitz-related structure are considered in this paper. In particular, the solutions of the inverse eigenvalue problems for Toeplitz-plus-Hankel matrices and for Toeplitz matrices having all double eigenvalues are characterized, respectively, in close form. Being centrosymmetric itself, the Toeplitz-plus-Hankel solution can be used as an initial value in a continuation method to solve the more difficult inverse eigenvalue problem for symmetric Toeplitz matrices. Numerical testing results show a clear advantage of such an application.

On some inverse eigenvalue problems with Toeplitz-related structure

Diele F;Laudadio T;Mastronardi N
2004

Abstract

Some inverse eigenvalue problems for matrices with Toeplitz-related structure are considered in this paper. In particular, the solutions of the inverse eigenvalue problems for Toeplitz-plus-Hankel matrices and for Toeplitz matrices having all double eigenvalues are characterized, respectively, in close form. Being centrosymmetric itself, the Toeplitz-plus-Hankel solution can be used as an initial value in a continuation method to solve the more difficult inverse eigenvalue problem for symmetric Toeplitz matrices. Numerical testing results show a clear advantage of such an application.
2004
Istituto Applicazioni del Calcolo ''Mauro Picone''
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/161561
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact