The Fast Spiking (FS) interneurons are coupled by both electrical and inhibitory synapses and experimental findings suggest that they operate as a clockwork affecting the processing of neural information. At present, it is not known which is the functional role of electrical synapses in a network of inhibitory interneurons. In our contribution, by using a single compartment biophysical model of an FS cell, we determine the parameter values leading to the emergence of synchronous regimes in a network of FS interneurons coupled by chemical and electrical synapses. We also compare our results with those recently obtained for a pair of coupled Integrate & Fire neural models [1].
The after-hyperpolarization amplitude and the rise time constant of IPSC affect the synchronization properties of networks of inhibitory interneurons
Di Garbo A;Chillemi S
2005
Abstract
The Fast Spiking (FS) interneurons are coupled by both electrical and inhibitory synapses and experimental findings suggest that they operate as a clockwork affecting the processing of neural information. At present, it is not known which is the functional role of electrical synapses in a network of inhibitory interneurons. In our contribution, by using a single compartment biophysical model of an FS cell, we determine the parameter values leading to the emergence of synchronous regimes in a network of FS interneurons coupled by chemical and electrical synapses. We also compare our results with those recently obtained for a pair of coupled Integrate & Fire neural models [1].I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.