We report on the application of a simple white light source based on the supercontinuum generation from commercial photonic crystal fibres to confocal fluorescence microscopy and fluorescence lifetime imaging (FLIM) microscopy. The coherent white light can be tuned by varying the wavelength and intensity of the pump, a Ti:Sapphire laser. There are several advantages jn the use of SC sources: spatially coherent white radiation, tuning ranges of approximately 400 nm, high brightness, a robust compact system (potentially all-fibre) and relatively low cost. Being pulsed, SC sources are suitable for FLIM and may be used for multiple excitation.
Coherent white light confocal fluorescence imaging and fluorescence lifetime imaging microscopy
Silvia Soria;Franco Quercioli;Raffaella Mercatelli;Federica Bianco;Ilaria Cacciari;Stefano Pelli;Giancarlo Righini
2009
Abstract
We report on the application of a simple white light source based on the supercontinuum generation from commercial photonic crystal fibres to confocal fluorescence microscopy and fluorescence lifetime imaging (FLIM) microscopy. The coherent white light can be tuned by varying the wavelength and intensity of the pump, a Ti:Sapphire laser. There are several advantages jn the use of SC sources: spatially coherent white radiation, tuning ranges of approximately 400 nm, high brightness, a robust compact system (potentially all-fibre) and relatively low cost. Being pulsed, SC sources are suitable for FLIM and may be used for multiple excitation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.