In this article, the structure and intermolecular dynamics of 1,3-alkylmethylimidazolium bis(trifluoromethanesulfonyl)amides [C(n)mim][NTf(2)] with n = 2-5 are compared to those of 1,3-dialkylimidazolium bis(trifluoromethanesulfonyl)amides [(C(n))(2)im][NTf(2)] with n = 2-5. The structures of these room-temperature ionic liquids (RTILs) were studied by small-wide-angle X-ray scattering (SWAXS), and their intermolecular dynamics were studied by optical Kerr effect (OKE) spectroscopy. The SWAXS measurements indicate that, on a microscopic scale, the liquid structure of RTILs with symmetric cations is similar to that of RTILs with asymmetric cations. The OKE measurements indicate that the intermolecular dynamics of RTILs with symmetric cations are higher in frequency than those of RTILs with asymmetric cations. These results suggest that the local structure of RTILs with symmetric cations is more solid-like than that of RTILs with asymmetric cations. Further evidence for this difference in local structure on a mesoscopic spatial scale is that the width of the low-Q peak in the SWAXS data is narrower for [(C(5))(2)im][NTf(2)] than for [C(5)mim][NTf(2)]. Moreover, the structure and intermolecular dynamics of the RTILs with ethyl-substituted cations appear to be quite different from those of other RTILs within a given series. This difference is evidenced by a clear change in the dependence of the spectral parameters of the intermolecular part of the OKE spectrum on the alkyl chain length in going from n = 2 to n = 3. The dependence of the SWAXS and OKE data on alkyl chain length is discussed within the context of the nanoscale heterogeneities of RTILs.
Effect of Cation Symmetry and Alkyl Chain Length on the Structure and Intermolecular Dynamics of 1,3-Dialkylimidazolium Bis(trifluoromethanesulfonyl)amide Ionic Liquids.
Triolo Alessandro
2009
Abstract
In this article, the structure and intermolecular dynamics of 1,3-alkylmethylimidazolium bis(trifluoromethanesulfonyl)amides [C(n)mim][NTf(2)] with n = 2-5 are compared to those of 1,3-dialkylimidazolium bis(trifluoromethanesulfonyl)amides [(C(n))(2)im][NTf(2)] with n = 2-5. The structures of these room-temperature ionic liquids (RTILs) were studied by small-wide-angle X-ray scattering (SWAXS), and their intermolecular dynamics were studied by optical Kerr effect (OKE) spectroscopy. The SWAXS measurements indicate that, on a microscopic scale, the liquid structure of RTILs with symmetric cations is similar to that of RTILs with asymmetric cations. The OKE measurements indicate that the intermolecular dynamics of RTILs with symmetric cations are higher in frequency than those of RTILs with asymmetric cations. These results suggest that the local structure of RTILs with symmetric cations is more solid-like than that of RTILs with asymmetric cations. Further evidence for this difference in local structure on a mesoscopic spatial scale is that the width of the low-Q peak in the SWAXS data is narrower for [(C(5))(2)im][NTf(2)] than for [C(5)mim][NTf(2)]. Moreover, the structure and intermolecular dynamics of the RTILs with ethyl-substituted cations appear to be quite different from those of other RTILs within a given series. This difference is evidenced by a clear change in the dependence of the spectral parameters of the intermolecular part of the OKE spectrum on the alkyl chain length in going from n = 2 to n = 3. The dependence of the SWAXS and OKE data on alkyl chain length is discussed within the context of the nanoscale heterogeneities of RTILs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.