The zero temperature phase diagram for ultracold bosons in a random 1D potential is obtained through a site decoupling mean-field scheme performed over a Bose-Hubbard (BH) Hamiltonian, whose hopping term is considered as a random variable. As for the model with random on-site potential, the presence of disorder leads to the appearance of a Bose glass phase. The different phases-i.e., Mott insulator, superfluid, and Bose glass-are characterized in terms of condensate fraction and superfluid fraction. Furthermore, the boundary of the Mott lobes is related to an off-diagonal Anderson model featuring the same disorder distribution as the original BH Hamiltonian.
Mean-field phase diagram for Bose-Hubbard Hamiltonians with random hopping
Buonsante P;Vezzani A
2007
Abstract
The zero temperature phase diagram for ultracold bosons in a random 1D potential is obtained through a site decoupling mean-field scheme performed over a Bose-Hubbard (BH) Hamiltonian, whose hopping term is considered as a random variable. As for the model with random on-site potential, the presence of disorder leads to the appearance of a Bose glass phase. The different phases-i.e., Mott insulator, superfluid, and Bose glass-are characterized in terms of condensate fraction and superfluid fraction. Furthermore, the boundary of the Mott lobes is related to an off-diagonal Anderson model featuring the same disorder distribution as the original BH Hamiltonian.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.